

WHITEPAPER

AKUSTIK

Über Schall, Lärm und akustisch wirksame Beleuchtung

quiet - DAS LICHT-AKUSTIK-MODUL

Der Fokus auf die Bedürfnisse des Menschen endet bei PLANLICHT nicht mit der Beleuchtung an sich, sondern umfasst auch das Thema Akustik. So werden auch spezielle Akustikleuchten und Paneele für die Schallabsorption angefertigt. Die darin verbauten, vielfältigen Dämm-Materialien aus der Natur – beispielsweise Heu und Schafwolle – filtern störende Umgebungsgeräusche, Regulieren die Nachhallzeit und verwandeln selbst Räume mit hohem Geräuschpegel in lärmfreie Arbeitsplätze.

Die Leuchten der "quiet"-Linie sind somit hochwertige architektonische Multifunktionsleuchten, sowohl mit lichttechnischen und akustischen Eigenschaften als auch mit der Aufgabe die Räume in ein besonderes audiovisuelles Ambiente zu tauchen.

quiet - AKUSTIKLEUCHTEN

In Kombination mit akustischen Materialien, ist mit der **sinus.quiet** eine einzigartige, akustisch wirksame Leuchte gelungen. Mit den natürlichen Oberflächen entsteht eine spezielle phonoabsorbierende Wirkung in Verbindung mit technischem Licht aus dem Hause PLANLICHT.

Für den Office-Bereich überzeugt besonders **quadro.quiet**: Die 10 BAP-Rasterfarben und die 7 verschiedenen Filz-Absorber geben eine Vielfalt an Kombinationsmöglichkeiten. Und wer es auch hier alpin mag: quadro.quiet kann auf Wunsch auch mit organoiden Oberflächen bestückt werden

WHITE**PAPER** | AKUSTIK

In diesem Whitepaper soll Ihnen ein kleiner Einblick in die Welt der Akustik, im Speziellen der Raumakustik in Büroarbeitsplätzen, gegeben werden. In einer ganzheitlichen Betrachtung von Human Centric Lighting (HCL) steht für uns nicht nur die Qualität des Lichtes, sondern auch die gesamte Qualität der Lebens- und Arbeitsumwelt im Mittelpunkt. Mit den PLANLICHT Akustikleuchten verbinden wir dynamisch weiße, in Tageslichtverläufen steuerbare Beleuchtungslösungen mit den Anforderungen der Raumakustik für ein ideales Umfeld – sozusagen die Verquickung von hohen melanopischen und akustischen Wirkungsgraden.

Wie bei der Lichtplanung ist eine vernünftige Akustikplanung der Schlüssel zum Erfolg. Nicht nur die einzelne Leuchte, das einzelne Produkt, sondern der gesamte Lösungsansatz bringt die gewünschten Ergebnisse. HCL eben.

Schall und Lärm

Bevor wir uns dem akustischen Vokabular im Detail annähern, wollen wir uns klar machen, dass die Belästigung durch Schall – der Lärm – prinzipiell subjektiv wahrgenommen wird. Eine Flughafenmitarbeiterin wird eine Lärmbelästigung wahrscheinlich anders definieren als ein Yogalehrer. Mit der subjektiven Raumakustik wird versucht, aus objektiven Grössen auf den Grad der subjektiven Belästigung zu schliessen. Die dafür verwendeten Parameter setzen sich aus Schalldruckpegel in dB(A), Frequenzzusammensetzung, zeitlichem Verlauf und Dauer des Geräusches zusammen. Allgemein wird davon ausgegangen, dass Geräusche ab 30 dB(A) als belästigend empfunden werden. Die Arbeitsstättenverordnung fordert, den Schalldruckpegel so niedrig wie möglich zu halten. In normativen Definitionen geht es wie üblich um Grenzwerte, die wie bei fast allem eben Grenzwerte sind – ob maximale Werte wie hier oder Mindestwerte wie etwa bei der Beleuchtungsstärke.

Für Büroarbeitsplätze wird für Tätigkeiten von hoher Komplexität (schöpferisches Denken, Entscheidungsfindung, Problemlösung, einwandfreie Sprachverständlichkeit) ein Beurteilungspegel von maximal 55 dB(A), für Tätigkeiten mittlerer Komplexität (ähnlich wiederkehrende Aufgaben, zeitliche Beschränkung, befriedigende Sprachverständlichkeit) ein Grenzwert von 70 dB(A) vorgegeben – jeweils unter Berücksichtigung der von aussen einwirkenden Geräusche. Ob sich nun in der Praxis eines Büroalltag die Tätigkeiten immer so scharf abgrenzen lassen, sei hinterfragt.

Geräuschquellen

GESPRÄCHE VON KOLLEG:INNEN

Der Schalldruckpegel eines Menschen, der spricht, liegt bei etwa 63 dB(A). In Büros, in denen ständig Menschen sprechen, ist der normative Wert von 55 dB(A) somit kaum einzuhalten. Hinzu kommt der Effekt, dass in lauter Umgebung auch gerne lauter gesprochen wird. Die subjektive Störung hängt dabei davon ab, ob der Gesprächsinhalt für den Zuhörer relevant ist oder ob durch das Telefonat des Sitznachbarn die Konzentration auf die eigene Aufgabe beeinträchtigt wird. Nicht nur Telefonate von Kollegen, auch Klingeltöne stören.

COMPUTER, DRUCKER, KOPIERER

Betriebsgeräusche sowie die permanente Frequentierung von Druckern und Kopierern können eine Lärmbelästigung verursachen.

KLIMAANLAGEN

Stetige Geräusche von Geräten können zu einem sogenannten Sound Masking führen, d.h. sie überdecken akustisch z.B. Gespräche.

Raumakustik Bauakustik

Für den Ansatz der akustischen Wirkung in Räumen – am Arbeitsplatz oder auch zuhause – ist die Disziplin der Raumakustik relevant. Diese ist von der Bauakustik abzugrenzen.

Die **Bauakustik** befasst sich mit der **Schalldämmung** von Bauteilen und widmet sich der Frage, welcher Anteil des Schalls auf der anderen Seite des Bauteils ankommt.

Die **Raumakustik** befasst sich zudem mit der

Schalldämpfung, also der Verbesserung der Hörsamkeit innerhalb eines Raumes. Und genau das soll hier unser Thema sein...

Schall und Schallausbreitung

Schall bezeichnet allgemein mechanische Schwingungen in einem elastischen Medium (Gas, Flüssigkeit, Festkörper). Diese Schwingungen pflanzen sich in Form von Schallwellen fort. Nach Art des Mediums unterscheidet man zwischen Luftschall, Wasserschall und Körperschall. In Räumen ist der vom Gehör direkt wahrnehmbare Luftschall relevant. In der Luft sind Schallwellen Druck- und Dichteschwankungen. Schall breitet sich prinzipiell in alle Raumrichtungen aus, obgleich manche Schallquellen je nach Ausrichtung in einzelne Richtungen eine erhöhte Schallabstrahlung aufweisen. In der Planung wird dabei meist von einer näherungsweisen kugelförmigen Schallabstrahlung ausgegangen. Der Schalldruckpegel von Schallquellen nimmt um 6 dB je Abstandsverdoppelung ab.

Beeinflussung der Raumakustik

DECKE

Meist ist die Decke die grösste freie Fläche in einem Raum. Mit einer akustischen Decke oder auch – und hier finden wir uns wieder – mit einer Akustikleuchte können signifikante Wirkungen erzielt werden.

WAND

Wände sind tendenziell schallhart, d.h. sie reflektieren den Schall und können je nach Raumgeometrie den Schall auch aufschaukeln. Schallabsorbierende Wandelement wie Bilder oder Bildabsorber mindern die Problematik.

BODEN

Teppiche nehmen im Gegensatz zu Parkettböden den Trittschall (Körperschall) auf und vermindern die Weitergabe von Störgeräuschen. Teppiche absorbieren den Schall in höheren Frequenzen und wirken sich dadurch subjektiv angenehm auf die Raumakustik aus.

MÖBFL

Schrank- oder andere Möbeloberflächen ohne akustisches Tuning reflektieren Schall. Akustisch wirksame Möbeloberflächen wie Schranktüren üben einen positiven Einfluss auf die Raumakustik aus.

FENSTER

Fensterflächen reflektieren Schall stark. Mit schallabsorbierenden Lamellen oder Vorhängen wird eine Schallabsorption erreicht.

MENSCH

Der menschliche Körper wirkt wie ein Absorber und nimmt so viel Schallenergie wie 0,5 m² hoch absorbierendes Material auf.

PFLANZE

Entgegen der landläufigen Trivia tragen Pflanzen nicht zur Verbesserung der Raumakustik bei. Aber hübsch anzusehen sind sie.

Frequenz und Wellenlänge

Der vom Menschen wahrnehmbare Bereich liegt zwischen 16 und 20.000 Hertz (Hz). Die Empfindlichkeit des Gehörs ist stark frequenzabhängig, am empfindlichsten sind wir im Frequenzbereich der menschlichen Sprache zwischen 250 und 2.000 Hz. Das hilft beim Zuhören, aber auch genau in diesem Bereich sind wir am anfälligsten für Störungen.

Mit sogenannten Isophonen werden Kurven gleicher Lautstärkenwahrnehmung dargestellt. So muss ein Ton mit 100 Hz um die 25 dB laut sein, um gehört zu werden, bei 1.000 Hz reichen bereits 5 dB.

RELEVANTE FREOUENZBEREICHE BEI DER RAUMPLANUNG

In der raumakustischen Planung bezieht man sich in den international genormten Prüfverfahren für Schallabsorption von Materialien (DIN EN ISO 11654) auf den Frequenzbereich zwischen 100 und 5.000 Hz.

WELLENLÄNGE λ

Zu jeder Frequenz gibt es auch eine passende Wellenlänge λ . In unserem Frequenzbereich beträgt diese zwischen 7 Zentimetern bei 5.000 Hz und 3,4 Metern bei 100 Hz.

TERZEN UND OKTAVEN

Die Frequenz macht's. Soweit sind wir bereits vorgedrungen. Und da eben viele raumakustische Grössen (Nachhallzeit, Schallabsorption, Schalldruckpegel usw.) frequenzabhängig sind, ändern sich diese Werte je nach Frequenz. Nach DIN 18041 will die Planung in Bandbreiten von jeweils einer Oktave durchgeführt werden. Dazu gibt es die Terz- und Oktavmittenfrequenzen. Der Schritt von einer Oktave zur nächsten ergibt sich aus einer Frequenzverdoppelung. Eine Oktave hat wiederum drei Terzen. In unserem raumakustischen Frequenzbereich ergeben sich somit sechs Oktav- bzw. 18 Terzschritte.

HARD FACTS

Für die Ausbreitung von Schallwellen in der Luft gilt: Das Produkt der Wellenlänge λ und der Frequenz f ergibt die Schallgeschwindigkeit c.

 $\lambda \cdot f = c$

Die Wellenlänge λ wird in Metern (m) angegeben, die Frequenz f – die Anzahl an Schwingungen pro Sekunde – in Hertz (Hz).

Die Schallgeschwindigkeit ist abhängig von Temperatur und Luftdruck.

FREQUENZBEREICHE

Hörbereich	16 Hz	20.000 Hz
Musik	16 Hz	16.000 Hz
Sprache	63 Hz	8.000 Hz
Kommunikation	200 Hz	2.000 Hz
Infraschall	< 16 Hz	
Ultraschall		> 20.000 Hz

Terzschritte

100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000
	125			250			500			1000			2000			4000	

Oktavschritte

Schalldruck, Schalldruckpegel und Beurteilungspegel

Der **Schalldruck p** beschreibt die Geräuscheinwirkung auf Menschen. Wie bereits gelernt entsteht Luftschall durch die Schwingungen in der Luft, ausgelöst von Luftdruckschwankungen. Je lauter ein Schallereignis, desto stärker sind die Druckschwankungen. Der Schalldruck wird in Pascal (Pa) bzw Mikropascal (µPA) angegeben.

Der **Schalldruckpegel** $\mathbf{L_p}$ beschreibt das logarithmierte Verhältnis des Effektivwertes des Schalldrucks eines Schallereignisses zum Bezugswerts $\mathbf{p_0}$ (Hörschwelle). Das Ergebnis wird mit der Hilfsmaßeinheit Dezibel (dB) gekennzeichnet.

Hörschwelle

(Schalldruck p_0) $p_0 = 2 \cdot 10^{-5} \text{ Pa}$ (= 20 μ Pa)

Schmerzschwelle

(Schalldruck p_s) $p_s = 20 \text{ Pa}$ (= 20.000.000 μ Pa) Zur Darstellung dieses grossen Bereiches (Hörschwelle zu Schmerzschwelle erhöht sich um Faktor 10 Millionen), wird eine logarithmisch definierte Grösse verwendet - das Dezibel (dB)

FORMFL

Der **Schalldruckpegel** L_p wird wie folgt berechnet und in Dezibel (dB) angegeben:

$$L_p = 10 \log_{10} \left(\frac{p^2}{p_0^2} \right) dB$$

Schalldruckpegel L_n

p = gemessener Schalldruck (Pa)

p₀ = Bezugsschallpunkt (Hörschwelle)

Demnach beträgt der Schalldruckpegel bei der Hörschwelle 0 dB, an der Schmerzschwelle 120 dB.

FREQUENZBEWERTUNG

Da das menschliche Ohr Töne mit gleichem Schalldruck in unterschiedlichen Tonhöhen unterschiedlich laut empfindet, werden sogenannte Frequenzbewertungskurven verwendet. Dazu werden Filter mit empirisch angepassten Übertragungsfunktionen (das ist jetzt nur was für Hardcore-Mathefreaks) eingesetzt.

Die für uns relevante **A-Bewertung dB(A)** entspricht den Kurven gleicher Lautstärkepegel bei ca. 20-40 phon.

SCHALLDRUCKPEGEL VON SPRACHE

In von Menschen besetzten Räumen ist die Weissagung von Schallpegeln oft relevant, dennoch schwierig. Sprechlautstärken sind unterschiedlich und passen sich oft den Umgebungslautstärken an. Der Sprachdruckpegel ist ein A-bewerteter Schalldruckpegel von Sprache, der in 1 m Abstand vom Mund gemessen wird.

SPRACHDRUCKPEGEL

SPRECHWEISE	PEGEI
entspannt	54 dB(A
normal	60 dB(A
angehoben	66 dB(A
laut	72 dB(A
sehr laut	78 dB(A

BERECHNUNG

Der Beurteilungspegel

L, wird nach DIN 45645-2 wie folgt berechnet:

 $L_{r} = L_{pAeq} + K_{l} + K_{T}$

Beurteilungspegel L,

L_{pAeq} = A-bewerteter äquivalenter

Dauerschalldruckpegel

K_I = Zuschlag für Impulshaltigkeit

K_τ = Zuschlag für Ton- & Informationshaltigkeit

Der Impulszuschlag K_I kann messtechnisch ermittelt werden, nicht jedoch der Zuschlag K_T, der aufgrund von Erfahrungswerten vergeben wird. Informationshaltige Geräusche sind diejenigen, die in besonderer Weise die Aufmerksamkeit wecken oder zum Mithören unerwünschter Information anregen. Der Zuschlag K_I kann 0 oder 3-6 dB betragen, der Zuschlag K_T 0, 3 oder 6 dB.

BEURTEILUNGSPEGEL

Der Beurteilungspegel L_r dient zur Beurteilung der Geräuschbelastung im Raum. Er ist ein zeitlicher Mittelwert (etwa über einen Arbeitstag) des A-bewerteten Schalldruckpegels einer Tätigkeit inklusive etwaiger Zuschläge für wiederkehrende, kurze, laute Töne.

Als Maximalwerte gelten:

 $L_r \le 55$ dB(A) für geistige Tätigkeiten $L_z \le 70$ dB(A) für einfache oder überwiegend mechanisierte Tätigkeiten

HINTERGRUNDGERÄUSCHPEGEL

Die schalltechnische Ausstattung von Räumen, bauliche Gegebenheiten des Gebäudes und Geräusche von aussen, wie Verkehrslärm, bestimmen den Hintergrundgeräuschpegel, der – so er zu hoch ist – die Leistungsfähigkeit in Büroräumen negativ beeinflusst.

HINTERGRUNDGERÄUSCHPEGEL

RAUMART	max. PEGEL
Koferenzräume	30-35 dB(A)
Einzelbüros	30-40 dB(A)
Grossraumbüros	35-45 dB(A)
Industrielle Arbeitsstätten	65-70 dB(A)

Empfohlene Höchstwerte für Hintergrundgeräuschpegel nach DIN EN ISO 11690-1

Nachhallzeit

Jubilate deo! Wenn der geübte Organist in die Tasten haut und das gottlobende Opus die gotischen Gewölbe erschallt, ist der gespannte Zuhörer prickelnd elektrisiert ob des imposanten Klanges. Dieser physisch spürbare Nachhall einer Kirche ist jedoch in einem Grossraumbüro weniger erwünscht.

Für die akustische Qualität eines Raumes ist die Nachhallzeit das Kriterium schlechthin. Darüber hinaus hat die Nachhallzeit einen wesentlichen Einfluss auf den Klang von Sprache.

Wie so vieles ist auch die Nachhallzeit frequenzabhängig, weshalb sie auch oft tabellarisch oder als Funktionskurve dargestellt wird. Gebräuchlich ist auch die Angabe nur eines Nachhallzeitwertes für den mittleren Frequenzbereich von 500 - 1.000 Hz.

Die Nachhallzeit wird im Wesentlichen beeinflusst durch:

- das Volumen des Raumes
- die Oberflächen im Raum
- die vorhandenen Einrichtungsgegenstände

Als Faustregel lässt sich also pauschal folgendes dazu sagen:

- Je grösser der Raum, umso länger die Nachhalzeit. Mit zunehmender Raumhöhe steigt zudem die Halligkeit.
- Je mehr absorbierende Flächen im Raum sind, desto kürzer ist die Nachhallzeit (Teppiche, Vorhänge, Menschen, Absorbermaterialien,...)

Die **Nachhallzeit** T ist die Zeitdauer in Sekunden der Abnahme des Schalldruckpegels um 60 dB nach einem Schallereignis. Das heisst: Wird in einem Raum ein Knall von 110 dB erzeugt, ist die Nachhallzeit die Dauer bis der Schalldruckpegel auf 50

NACHHALLZEITEN

dB gesunken ist.

RAUMART	NACHHHALLZEIT (s)
Büroraum	0,5 - 0,8 s
Konferenzraum	0,8 - 1,2 s
Klassenraum	0,6 s
Konzertsaal	1,5 s
Schwimmbad	≤ 1,7 s
Kirche	4 - 8 s

RAUMGRUPPEN nach DIN 18041

Zur Unterscheidung der Hörsamkeit auf verschiedene Entfernungen gliedert die DIN 18041 Räume in verschiedene Gruppen. Räume der Gruppe A sollen eine gute Hörsamkeit auf mittlere und grosse Entfernungen bieten, Räume der Gruppe B auf geringe Entfernungen. Wesentlich dabei ist die Inklusion von Personen mit eingeschränktem Hörvermögen.

Im Detail heisst das, Büroräume sind in die Gruppe B4 einzuordnen, Konferenzräume in A3, Pausenräume und Kantinen in B3. Empfehlungen für Büros und Callcenter sind zusätzlich in der VDI Richtlinie 2569 "Schallschutz und akustische Gestaltung im Büro" detailliert behandelt.

NUTZUNGSARTEN RÄUME GRUPPE A - DIN 18041

A1	Musik
A2	Sprache/Vortrag
A3	Unterricht/Kommunikation, Sprache/Vortrag inklusiv
A4	Unterricht/Kommunikation inklusiv
A5	Sport

NUTZUNGSARTEN RÄUME GRUPPE B - DIN 18041

B1	Räume ohne Aufenthaltsqualität
B2	Räume zum kurzfristigen Verweilen
В3	Räume zum längerfristigen Verweilen
B4	Räume mit Bedarf an Lärmminderung & Raumkomfort
B5	Räume mit besonderem Bedarf an Lärmminderung & Raumkomfort

Sprachverständlichkeit

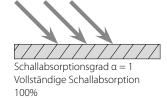
Die Sprachverständlichkeit oder Hörsamkeit wird von verschiedenen Parametern beeinflusst. Ein wesentlicher Punkt ist die Nachhallzeit. Allgemein gilt, dass die Sprachverständlichkeit umso besser ist, je niedriger die Nachhallzeit ist.

Darüber hinaus bestimmen das Raumvolumen, der Grundgeräuschpegel und die Platzierung von schallabsorbierenden Materialien die Sprachverständlichkeit.

Die Anforderungen sind different – während in Vortrags- oder Unterrichtssälen sowie Konferenzräumen ein hohes Mass an Sprachverständlichkeit über grosse Distanzen gefragt ist, will im Büro die Sprachverständlichkeit auf kurzen Distanzen hoch sein, alles im Grossraumbüro zu hören wirkt dabei störend. Hier kann mit Schallschirmen eine Lösung gefunden werden.

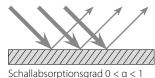
Das GROSSRAUMBÜRO und die DIN EN ISO 3382-3

Die Norm DIN EN ISO 3382-3 regelt Kerngrössen für eine objektive Bewertung von akustischen Gegebenheiten in Grossraumbüros. Dabei wird mit einer hohen räumlichen Abklingrate die Ausbreitung des Schalls minimiert. Gemessen wird dabei auch der Schalldruckpegel in 4 m Abstand sowie die Distanzen des Ablenkungsabstandes und des Vertraulichkeitsabstandes. Daraus ergibt sich ein normiertes Sprachspektrum aus einem Mittelwert aus männlichen und weiblichen Stimmen bei normaler Sprachanstrengung mit einem Summenpegel von 57,4 dB(A).


Schallabsorption

Schallabsorption ist der Entzug von Schallenergie. Dabei wird diese Schallenergie beim Auftreffen auf Grenzflächen in andere Energieformen (Wärme- oder Bewegungsenergie) umgewandelt oder sie kann durch schalldurchlässige Bauteile aus dem Raum entweichen.

Der **Schallabsorptionsgrad** α dient zur Bestimmung von schallabsorbierenden Materialeigenschaften. Er ist definiert als Verhältnis der vom Material geschluckten (also absorbierten) zur auftreffenden Schallenergie. Der α -Wert liegt zwischen 0 (keine Absorption) und 1 (vollständige Absorption). Ein Beispiel: bei einem Schallabsorptionsgrad von $\alpha=0.85$ wird 85% der Schallenergie absorbiert


In der Praxis werden Schallabsorptionsgrade durch ein normiertes Messverfahren bestimmt. Dabei können auch – obwohl mathematisch widersinnig – Schallabsortionsgrade grösser als 1 ermittelt werden. Das Maximum liegt bei ca. 1,2.

Und hier finden wir uns wieder: Wenig überraschend sind auch die Schallabsorptionsgrade frequenzabhängig.

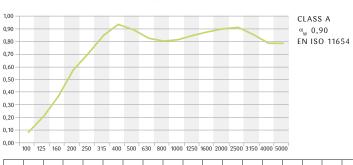
Schallabsorptionsgrad a = 0 Keine Schallabsorption 0%

Schallabsorptionsgrad 0 < α < Teilweise Schallabsorption

SCHALLABSORPTIONSKLASSEN

Klasse	$a_{_{ m W}}$ -Wert
Α	0,90 - 1,00
В	0,80 - 0,85
С	0,60 - 0,75
D	0,30 - 0,55
E	0,15 - 0,25
nicht klassifiziert	0,00 - 0,10

EUROPÄISCHE EINZAHLANGABE DIN ESN ISO 11654


Für die Ermittlung des **bewerteten Schallabsorptionsgrades** $\mathbf{\alpha}_{\mathbf{w}}$ wird zuerst ein Mittelwert aus drei Terzwerten ($\alpha_{\mathbf{s}}$) für die Oktavmittlenfrequenzen (100 - 4.000 Hz) ermittelt. Die Mittelwerte der Oktaven ($\alpha_{\mathbf{p}}$) werden mit der Bezugskurve aus der DIN EN ISO 11654 verglichen und somit der bewertete Schallabsorptionsgrad $\alpha_{\mathbf{w}}$ als Einzahlwert abgelesen.

Mit diesem Einzahlwert lassen sich Schallabsorber grob klassifizieren und vergleichen. Nachteil dabei ist, dass mit der starken Vereinfachung das Absorptionsspektrum nicht abgelesen werden kann.

ÄQUIVALENTE SCHALLABSORPTIONSFLÄCHE

Es kommt doch auf die Grösse an. Die Fläche des absorbierenden Materials ist ausschlaggebend und wird mit der äquivalenten Schallabsorptionsfläche A eq (in m²) als Produkt aus der Fläche S eines Absorbers und dessen Absorptionsgrad α definiert, also A eq = S \cdot α . Das heisst, dass z.B. 10 m² eines Schallabsorbers mit α = 0,80 eine äquivalente Schallabsorptionsfläche von 8 m² aufweist und somit die selbe Wirkung im Raum hat wie 20 m² eines Absorbers mit α = 0,40 oder 40 m² eines Absorbers mit α = 0,40 oder 40 m² eines Absorbers mit α = 0,20.

Beispiel: Schallabsorptionsgrad PLANLICHT quadro.quiet mit Organoid® Absorber in den Terzwerten und Oktavmittenfrequenzen

100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000
0,09	0,22	0,37	0,58	0,71	0,85	0,94	0,90	0,83	0,81	0,82	0,85	0,88	0,90	0,91	0,86	0,79	0,79
0,25 0,70			0,90			0,85			0,90			0,80					

Schallabsorber

Von Schallabsorbern erwarten wir nur eines: sie sollen den Schall schlucken, also absorbieren. Dabei ist die Herausforderung, unterschiedliche Frequenzen zu bedienen. Tiefe Frequenzen mit grossen Wellenlängen erfordern voluminöse Schallabsorber aus porösen Materialien oder Resonanzmechanismen (z.B. abgeschlossene Luftvolumina oder schwingende Oberflächen). Ziel ist es, die Absorptionsfähigkeit auf einen grossen Frequenzbereich auszudehnen und damit breitbandig wirksam zu sein. Deshalb werden oft die Absorbertypen kombiniert eingesetzt.

PORÖSE SCHALLABSORBER

Trifft Schall auf poröses Material, reiben sich die bewegten Luftteilchen in den Poren des Aborbers und wandeln somit die Schallenergie in Wärmeenergie um. Die luftgefüllten Poren müssen der umgebenden Luft gegenüber offen, miteinander verbunden und tief genug sein, damit der Schall eindringen und seinen Reibungsvorgang effektiv umsetzen kann. Geeignete Materialien sind Mineralfasern oder offenporige Schaumstoffe. Dämmstoffe mit geschlossenen Poren wie Styropor sind ungeeignet. Das Schliessen von Poren etwa durch Anstriche verhindert ebenfalls diesen Effekt ebenfalls

Poröse Absorber zeichnen sich dadurch aus, dass ihr Schallabsorptionsgrad zu hohen Frequenzen hin zunimmt und ihr Absorptionsvermögen in tiefen und mittleren Frequenzen stark von der Materialdicke abhängt.

RESONANZABSORBER

Ein Resonanzabsorber ist ein physikalisches Masse-Feder-System. Dabei wird eine Platte oder Folie in Schwingung versetzt, die Luft dazwischen fungiert als Feder und die auftreffende Schallenergie wird in kinetische Energie umgewandelt. Dieses System besitzt eine Resonanzfrequenz (bzw. eine Eigenfrequenz), in deren Nähe besonders gut absorbiert wird. Man unterscheidet zwischen Loch- oder Schlitzabsorbern nach dem Prinzip von Helmholtz-Resonatoren und Platten- bzw. Folienabsorbern. Beide Systeme absorbieren in einem engen Frequenzbereich (der Eigenfrequenz). Durch die Kombination mit porösem Absorptionsmaterial in den starren Grenzflächen kann der wirksame Frequenzbereich erheblich erweitert werden.

MIKROPERFORIERTE ABSORBER

Wie poröse Absorber wandeln mikroperforierte Absorber die Schallenergie in Wärmeenergie durch Reibung an der feinen Lochung um. Diese Absorber bestehen aus dünnem Material mit einer sehr feinen Lochung (Lochdurchmesser < 1 mm), wobei der Lochflächenanteil nur rund 1% der Oberfläche beträgt. Der Frequenzbereich des Absorptionsmaximums wird durch den Abstand der Folie oder Platte zur reflektierenden Ebene (Wand oder Fenster) bestimmt. Für eine Absorption von mittleren bis hohen Frequenzen beträgt dieser Abstand ca. 30 - 200 mm.

FAUSTREGEL

Hohe Frequenzen lassen sich durch Schallabsorber mit geringer Aufbauhöhe bedämpfen, teife Frequenzen verlangen nach Absorbern mit grosser Aufbauhöhe oder grossen Abmessungen.

Schallabsorption an Decken

Da Decken die grösste freie Fläche in Räumen darstellen, kommt ihnen für Absorber eine besondere Rolle zu.

AKUSTIKDECKEN

Akustikdecken bieten sich aufgrund ihrer grossen Fläche besonders an. Auch die Beschichtung mit Akustikputz erhöht die akustische Wirkung ebenso wie der Einsatz akustisch wirksamer Einbauleuchten.

BAFFELDECKEN

Baffeldecken kommen zum Einsatz, wenn eine vollständige Verkleidung von Decken nicht möglich ist. Die vertikal abgehängten Akustikmodule sind auch für thermoaktive Decken geeignet.

DECKENSEGEL

Deckensegel werden frei im Raum aufgehängt und können somit auch nachträglich einfach zur Verbesserung der Raumakustik installiert werden. Da v.a. im Bürobereich dort, wo akustische Absorption gefragt ist, auch Licht benötigt wird, eignet sich eine Akustikleuchte hier besonders.

Akustikplanung

Bei einer Akustikplanung werden zuerst die akustischen Basisvoraussetzungen von Räumen betrachtet. In weiterer Folge kann mit den passenden akustischen Massnahmen bzw. der Einplanung von adäquaten Absorbern die Nachhallzeit eingestellt und der Schallpegel vermindert werden.

Für eine konkrete Akustikplanung sind einige Parameter relevant und wissenswert, um die optimalen Ergebnisse zu erhalten:

RAUMGEOMETRIE/RAUMVOLUMEN

Länge, Breite, Höhe des Raumes. Die Geometrie und das Volumen des Raumes haben signifikanten Einfluss auf die Nachhallzeiten.

MATERIALITÄTEN

Verschiedene Materialen weisen differente Reflexionswerte auf. Wände, Decken, Böden und Fensterflächen haben einen wesentlichen Einfluss auf die Raumakustik.

RAUMNUTZUNG

Wie wird der Raum genutzt? Für verschiedene Anwendungen (siehe Raumgruppen) gelten verschiedene Anforderungen.

BELEGUNG

Menschen sind signifikante Absorber. Ein Mensch entspricht einer hoch absorbierenden Fläche von 0,5 m². Deshalb ist die Anzahl der Menschen im Raum mit einzubeziehen.

PLANLICHT | PROJEKT - INSPIRATIONEN

Beispiel: quadro.quiet als Akustikhängeleuchte in einem Besprechungsraum

Beispiel: Akustikleuchte sinus.quiet als Deckensegel Installation in einem Hospitality Bereich, kombiniert mit Bildabsorbern

Literaturverzeichnis

Catja Hilge, Christian Nocke, Mats Exeter (2016): Raumakustik. Akustische Bedingungen am Arbeitsplatz effektiv gestalten. 3. Auflage, Industrieverband Büro und Arbeitswelt. VBG (2012): Akustik im Büro. Hilfen für die Akustische Gestaltung von Büros. DIN 18041
DIN EN ISO 3382-3
DIN EN ISO 11690-1
DIN EN ISO 11654

6134 Vomp, Austria, Au 25 Tel. +43-5242-71608, Fax +43-5242-71283 info@planlicht.com WWW.PLANLICHT.COM

IMPRINT

Publisher: Creative Concept: planlicht GmbH & Co. KG, Vomp PLANLICHT Marketing Team © 2022, 2. überarbeitete Auflage

